Курсовая Работа Поверхностное Натяжение

Уважаемый гость, на данной странице Вам доступен материал по теме: Курсовая Работа Поверхностное Натяжение. Скачивание возможно на компьютер и телефон через торрент, а также сервер загрузок по ссылке ниже. Рекомендуем также другие статьи из категории «Рефераты».

Курсовая Работа Поверхностное Натяжение.rar
Закачек 2573
Средняя скорость 7130 Kb/s

Курсовая Работа Поверхностное Натяжение

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости.

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует. Сила поверхностного натяжения пропорциональна длине того участка контура, на который она действует. Коэффициент пропорциональности γ — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

Свойства жидкостей. Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 1).

Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед.

Рис. 2 иллюстрирует отличие газообразного вещества от жидкости на примере воды. Молекула воды H2 O состоит из одного атома кислорода и двух атомов водорода, расположенных под углом 104°. Среднее расстояние между молекулами пара в десятки раз превышает среднее расстояние между молекулами воды. В отличие от рис. 3.5.1, где молекулы воды изображены в виде шариков, рис. 3.5.2 дает представление о структуре молекулы воды.

Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·107 раз.

Вследствие плотной упаковки молекул сжимаемость жидкостей, то есть изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV / V0пропорционально изменению температуры ΔT:

Коэффициент β называют температурным коэффициентом объемного расширения. Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С βв ≈ 2·10–4 К–1, у стали βст ≈ 3,6·10–5 К–1, у кварцевого стекла βкв ≈ 9·10–6 К–1.

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м2 ) или в ньютонах на метр (1 Н/м = 1 Дж/м2 ).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (то есть от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму – в этом тоже проявляется действие сил поверхностного натяжения. Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости (рис. 3).

Подвижная сторона проволочной рамки в равновесии под действием внешней силы и результирующей сил поверхностного натяжения .

Силы поверхностного натяжения стремятся сократить поверхность пленки. Для равновесия подвижной стороны рамки к ней нужно приложить внешнюю силу Если под действием силы перекладина переместиться на Δx, то будет произведена работа ΔAвнеш = Fвнеш Δx = ΔEp = σΔS, где ΔS = 2LΔx – приращение площади поверхности обеих сторон мыльной пленки. Так как модули сил и одинаковы, можно записать:

Коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp. Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе 2πR разреза, и сил избыточного давления, действующих на площадь πR2 сечения (рис. 4). Условие равновесия записывается в виде

Отсюда избыточное давление внутри капли равно

Муниципальное образовательное учреждение

«Средняя общеобразовательная школа № 24 с углубленным изучением предметов художественно-эстетического направления» Школьная научно-практическая конференция Реферат на тему: «Роль сил поверхностного натяжения в физике»

Онохин Дмитрий Алексеевич, ученик 10 «А» класса,МОУ «СОШ № 24 с углубленным изучением предметов художественно-эстетического направления». Научный руководитель:

Вольхин Николай Иванович,учитель физики,МОУ «СОШ № 24 с углубленным изучением предметов художественно-эстетического направления».

г. Архангельск, 2009

Роль поверхностного натяжения в жизни

Введение. Такие силы, как тяготение, упругость и трение, бросаются в глаза; мы ощущаем их непосредственно каждый день. Но в окружающем нас мире повседневных явлений действует еще одна сила, на которую мы обычно не обращаем никакого внимания. Сила эта сравнительно невелика, ее действия никогда не вызывают мощных эффектов. Она даже в последнее время исключена из программ приемных экзаменов для поступающих в вузы. Тем не менее мы не можем налить воды в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы, о которых у нас сейчас пойдет речь. Это силы поверхностного натяжения.

Сила поверхностного натяжения – это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности.

Действие сил поверхностного натяжения приводит к тому, что жидкость в равновесии имеет минимально возможную площадь поверхности. При контакте жидкости с другими телами жидкость имеет поверхность, соответствующую минимуму ее поверхностной энергии.

Понятие «поверхностное натяжение» впервые ввел Я. Сегнер (1752 год).

К вызываемым поверхностным натяжением эффектам мы настолько привыкли, что не замечаем их, если не развлекаемся пусканием мыльных пузырей. Однако в природе и нашей жизни они играют немалую роль.

Существует достаточно много различных методов определения поверхностного натяжения: метод капель, метод проволочной рамки, метод кольца, метод капиллярных волн, метод капли и пузырька и др. Метод проволочной рамки и метод кольца применяются для грубых измерений поверхностного натяжения. 1. Метод пузырька. «Выдуйте мыльный пузырь и смотрите на него: вы можете заниматься всю жизнь его изучением, не переставая извлекать из него уроки физики», – писал великий английский физик лорд Кельвин.

В частности, мыльная пленка является прекрасным объектом для изучения поверхностного натяжения. Сила тяжести здесь практически роли не играет, так как мыльные пленки чрезвычайно тонки и их масса совершенно ничтожна. Поэтому основную роль играют силы поверхностного натяжения, благодаря которым форма пленки всегда оказывается такой, что ее площадь минимально возможная в данных условиях. Почему пленка обязательно мыльная? Все дело в структуре мыльной пленки. Мыло богато так называемыми поверхностно-активными веществами, концы длинных молекул которых по-разному относятся к воде: один конец охотно соединяется с молекулой воды, другой к воде безразличен. Поэтому мыльная пленка обладает сложной структурой: образующий ее мыльный раствор как бы «армирован» частоколом упорядоченно расположенных молекул поверхностно-активного вещества, входящего в состав мыла.

Вернемся к мыльным пузырям. Наверное, каждому доводилось не только наблюдать эти удивительно красивые творения, но и пускать их. Они сферичны по форме и долго могут свободно парить в воздухе. Давление внутри пузыря оказывается больше атмосферного. Избыточное давление обусловлено тем обстоятельством, что мыльная пленка, стремясь еще больше уменьшить свою поверхность, сдавливает воздух внутри пузыря, причем чем меньше его радиус, тем большим оказывается избыточное давление внутри пузыря.

Свободная поверхность жидкости стремится сократиться. Это можно наблюдать в случае, когда жидкость имеет форму тонкой пленки. Примером такого состояния могут служить мыльные пленки, подобные тем, которые вы получили в детстве, выдувая мыльные пузыри. Так как толщина мыльных пленок очень мала, жидкость в пленке можно рассматривать как два поверхностных слоя, не учитывая влияния молекул, находящихся между слоями. Получив мыльный пузырь от трубки, с помощью которой он был получен. Вы заметите, что пузырь уменьшается. Это свидетельствует о сокращении поверхности мыльной пленки. 2. Метод проволочной рамки. Возьмите проволочный четырехугольный каркас и соедините его противоположные вершины тонкой ненатянутой нитью. Опустив каркас в мыльную воду, вы заметите, что вытянутый из воды каркас затянут мыльной пленкой. Проколов пленку по одну сторону нити, вы увидите, что нить примет форму дуги. Опыт свидетельствует о том, что поверхность мыльной пленки сокращается.

Свойство поверхности жидкости сокращается можно истолковать как существование сил, стремящихся сократить эту поверхность. Эти силы называют силами поверхностного натяжения.

С помощью описанного ниже опыта можно найти способ измерения сил поверхностного натяжения. Если опустить в мыльную воду проволочный каркас, вынув его из воды, легко заметить, что верхняя часть каркаса (до упора) затянута мыльной пленкой. Если потянуть за подвижную сторону этой рамки вниз, то пленка растянется, а если подвижную сторону отпустить, то пленка сократится.

Пленка, образовавшаяся на рамке, представляет собой тонкий слой жидкости и имеет две свободные поверхности.

Поверхностное натяжение измеряется силой, с которой поверхностный слой действует на единицу длины того или иного контура на свободной поверхности жидкости по касательной к этой поверхности. В Международной системе единиц эта величина измеряется в ньютонах на метр (1 Н/м).

3. Метод капли. Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли у плохо закрытого или неисправного крана. Пока капля мала, она не отрывается: ее удерживают силы поверхностного натяжения (поверхностный слой выполняет роль своеобразного мешочка). Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Всмотритесь внимательно, как постепенно растет капля, образуется сужение – шейка, и капля отрывается.

Отрыв капли происходит в тот момент, когда ее вес становится равным равнодействующей сил поверхностного натяжения, действующих вдоль окружности шейки капли. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превысит его прочность.

В действительности, конечно, ничего, кроме воды, в капле нет, но сам поверхностный слой воды ведет себя как растянутая эластичная пленка.

А видели вы когда-нибудь очень большие капли?

В обычных условиях таких капель нет. И это не случайно – капли большого диаметра неустойчивы и разрываются на маленькие. 4. Опыт «Пробирка». Первый взгляд на чай, налитый в чашку, подтверждает известное положение, что жидкость своей формы не имеет, а принимает форму сосуда, в который она налита. Возьмем пробирку, наполненную водой. Перевернем на книгу или открытку и будем постепенно вытаскивать открытку. Ни одна капля не пролилась, зато поверхность воды вздулась, образовав «горку». Все системы стремятся уменьшить свою энергию. Точно так же сила поверхностного натяжения стремится сократить до минимума площадь поверхности жидкости. Из всех геометрических форм шар обладает при данном объеме наименьшей поверхностью. Так что собственная форма жидкости – шар. Большое количество жидкости не может сохранить шарообразную форму; она изменяется под действием силы тяжести. Если устранить действие силы тяжести, то под действием молекулярных сил жидкость примет форму шара. 5. Опыт «Плато» Если взять смесь воды и спирта и поместить в нее каплю жидкого масла, то в какой-то момент сила тяжести уравновесится силой Архимеда и образовавшийся масляный шар, свободно покоящийся в смеси. Этот шар от разлета по молекулам удерживает сила поверхностного


Статьи по теме