Математические Основы Финансового Менеджмента Шпаргалка

Уважаемый гость, на данной странице Вам доступен материал по теме: Математические Основы Финансового Менеджмента Шпаргалка. Скачивание возможно на компьютер и телефон через торрент, а также сервер загрузок по ссылке ниже. Рекомендуем также другие статьи из категории «Шпаргалки».

Математические Основы Финансового Менеджмента Шпаргалка.rar
Закачек 2637
Средняя скорость 1931 Kb/s

Математические Основы Финансового Менеджмента Шпаргалка

StudySpace.ru – это хранилище знаний для студентов и аспирантов. Здесь вы можете скачать учебники и шпаргалки, аналитические статьи и рефераты. Уникальные лекции и шпаргалки для аспирантов из личного архива ВечноГО сТУдента, кандидатский минимум. Для вас бесплатные учебники и шпаргалки без регистрации.

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ФИНАНСОВОГО МЕНЕДЖМЕНТА Скачать шпаргалки, учебники, лекции

Проценты — это доход от предоставления капитала в долг в различных формах (ссуды, кредиты и т. д.), либо от инвестиций производственного или финансового характера.

Процентная ставка — величина, характеризующая интенсивность начисления процентов.

Величина получаемого дохода (т. е. процентов) определяется исходя из величины вкладываемого капитала, срока, на который он предоставляется в долг или инвестируется, размера и вида процентной ставки (ставки доходности).

Наращение (рост) первоначальной суммы долга — увеличение суммы долга за счет присоединения начисленных процентов (дохода).

Множитель (коэффициент) наращения — это величина, показывающая, во сколько раз вырос первоначальный капитал.

Период начисления — промежуток времени, за который начисляются проценты (получается доход).

В дальнейшем будем полагать, что период начисления совпадает со сроком, на который предоставляются деньги.

Период начисления может разбиваться на интервалы начисления.

Интервал начисления — минимальный период, по прошествии которого происходит начисление процентов.

Существуют две концепции и, соответственно, два способа определения и начисления процентов.

Декурсивный способ. Проценты начисляются в конце каждого интервала начисления. Их величина определяется исходя из величины предоставляемого капитала. Соответственно декурсивная процентная ставка, или, что то же, ссудный процент, представляет собой выраженное в процентах отношение суммы начисленного за определенный интервал дохода к сумме, имеющейся на начало данного интервала.

Антисипативный способ (предварительный). Проценты начисляются в начале каждого интервала начисления. Сумма процентных денег определяется исходя из наращенной суммы. Процентной ставкой будет выраженное в процентах отношение суммы дохода, выплачиваемого за определенный интервал, к величине наращенной суммы, полученной по прошествии этого интервала. Определяемая таким способом процентная ставка называется (в широком смысле слова) учетной ставкой или антисипативным процентом.

В мировой практике декурсивный способ начисления процентов получал наибольшее распространение. В странах развитой рыночной экономики антисипативный метод начисления процентов применялся, как правило, в периоды высокой инфляции.

При обоих способах начисления процентов процентные ставки могут быть либо простыми (если они применяются к одной и той же первоначальной денежной сумме в течение всего периода начисления), либо сложными (если по прошествии каждого интервала начисления они применяются к сумме долга и начисленных за предыдущие интервалы процентов).

В российской практике понятия ссудного процента и учетной ставки обычно не различаются и обозначаются собирательным термином “процентная ставка” (термин “учетная ставка” можно также встретить применительно к ставке рефинансирования Центрального банка и к вексельным операциям).

В связи с этим необходимо подчеркнуть, что по мере развития рыночных отношений вопрос различия декурсивного и антисипативного методов начисления приобретает все большую актуальность.

Финансисту — инвестору ли (вкладчику), заемщику ли средств — в любом случае необходимо иметь представление о способе начисления процентов, подразумеваемом в каждой конкретной сделке, тем более, что при укрупнении масштабов операции каждый процентный пункт становится все “тяжелее” и “тяжелее” .

В последующих параграфах будут приведены вычисления и даны примеры и графики, наглядно демонстрирующие, сколь ощутимыми могут быть различия в результатах при разных способах начисления процентов. Непонимание различия между видами процентных ставок может при этом вылиться не только в упущенную выгоду, но и в значительные убытки.

2.1. Простые ставки ссудных процентов

Простые ставки ссудных (декурсивных) процентов применяются обычно в краткосрочных финансовых операциях, когда интервал начисления совпадает с периодом начисления (и составляет, как правило, срок менее одного года), или когда после каждого интервала начисления кредитору выплачиваются проценты. Естественно, простые ставки ссудных процентов могут применяться и в любых других случаях по договоренности участвующих в операции сторон.

Введем следующие обозначения:

i (%) — простая годовая ставка ссудного процента;

i — относительная величина годовой ставки процентов;

I г сумма процентных денег, выплачиваемых за год;

I — общая сумма процентных денег за весь период начисления;

Р — величина первоначальной денежной суммы;

S — наращенная сумма;

k н коэффициент наращения;

n — продолжительность периода начисления в годах;

¶ — продолжительность периода начисления в днях;

Факультет экономики

Кафедра «Финансово-кредитных отношений»

Контрольная работа

по дисциплине «Финансовый менеджмент»

на тему: «Математические основы финансового менеджмента. Принципы и последовательность формирования инвестиционного портфеля предприятия»

Выполнила:

Студентка 5 курса

группа «с/о»

спец. «Финансы и кредит»

Дёмушкина О.Ю.

Проверил: Гревцова Т.В.

Рязань 2015г.

Содержание

1. Математические основы финансового менеджмента……………………3

2. Принципы и последовательность формирования инвестиционного портфеля предприятия…………………………………………………………..12

Математические основы финансового менеджмента.

Финансовый менеджмент подразумевает постоянное осуществление различного рода финансово-экономических расчетов, связанных с потоками денежных средств в разные периоды времени. Ключевую роль в этих расчетах играет оценка стоимости денег во времени.

Концепция стоимости денег во времени состоит в том, что стоимость денег с течением времени изменяется с учетом нормы прибыли на финансовом рынке, в качестве которой обычно выступает норма ссудного процента (или процента).

Концепция стоимости денег во времени играет основополагающую роль в практике финансовых вычислений [1]. Она предопределяет необходимость учета фактора времени в процессе осуществления любых долгосрочных финансовых операций путем оценки и сравнения стоимости денег при начале финансирования со стоимостью денег при их возврате в виде будущей прибыли, амортизационных отчислений, основной суммы долга и т.д.

В процессе сравнения стоимости денежных средств при планировании их потоков в продолжительном периоде времени используется два основных понятия — будущая стоимость денег или их настоящая стоимость.

Будущая стоимость денег представляет собой сумму инвестированных в настоящий момент средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента (процентной ставки). Определение будущей стоимости денег характеризует процесс наращения их стоимости (компаундинг), который состоит в присоединении к их первоначальной сумме начисленной суммы процентов.

Настоящая стоимость денег представляет собой сумму будущих денежных средств, приведенную с учетом определенной ставки процента к настоящему периоду времени [2]. Определение настоящей стоимости денег характеризует процесс дисконтирования их стоимости, который представляет операцию, обратную наращению, осуществляемую путем изъятия из будущей стоимости соответствующей суммы процентов (дисконтной суммы или «дисконта»).

При проведении финансовых вычислений, связанных с оценкой стоимости денег во времени, процессы наращения или дисконтирования стоимости могут осуществляться как по простым, так и по сложным процентам.

Простой процент представляет собой сумму дохода, начисляемого к основной сумме денежного капитала в каждом интервале общего периода его использования, по которой дальнейшие ее перерасчеты не осуществляются. Начисление простого процента применяется, как правило, при краткосрочных финансовых операциях.

Сложный процент представляет собой сумму дохода, начисляемого в каждом интервале общего периода его использования, которая не выплачивается, а присоединяется к основной сумме денежного интервала и в последующем платежном интервале сама приносит доход. Начисление сложного процента применяется, как правило, при долгосрочных финансовых операциях (инвестировании, кредитовании и т.п.).

Основным инструментом оценки стоимости денег во времени выступает процентная ставка (ставка процента) — удельный показатель, в соответствии с которым в установленные сроки выплачивается сумма процента в расчете на единицу денежного капитала.

денежная стоимость математический инструментарий

Математический инструментарий оценки стоимости денег по простым процентам использует наиболее упрощенную систему расчетных алгоритмов.

При расчете суммы простого процента в процессе наращения стоимости (компаундинга) используется следующая формула:

где I — сумма процента за обусловленный период времени в целом;

Р — первоначальная сумма (стоимость) денежных средств;

n — количество интервалов, по которым осуществляется расчет процентных платежей, в общем обусловленном периоде времени;

i — используемая процентная ставка, выраженная десятичной дробью.

В этом случае будущая стоимость вклада (S) с учетом начисленной суммы процента определяется по формуле:

S = Р + I = Р Ч (1 + ni).

Множитель (1 + ni) называется коэффициентом наращения суммы простых процентов. Его значение всегда должно быть больше единицы.

При расчете суммы простого процента в процессе дисконтирования стоимости (т.е. суммы дисконта) используется следующая формула:

D = S — S ∙ 1/ (1 + ni)

где D — сумма дисконта (рассчитанная по простым процентам) за обусловленный период времени в целом;

S — стоимость денежных средств;

n — количество интервалов, по которым осуществляется расчет процентных платежей, в общем обусловленном периоде времени;

i — используемая дисконтная ставка, выраженная десятичной дробью.

В этом случае настоящая стоимость денежных средств (F) с учетом рассчитанной суммы дисконта определяется по следующей формуле:

Используемый множитель (1/1+ni) называется коэффициентом дисконтирования. Его значение всегда должно быть меньше единицы.

Математический инструментарий оценки стоимости денег по сложным процентам использует более обширную и более усложненную систему расчетных алгоритмов [3].

При расчете будущей суммы вклада (стоимости денежных средств) в процессе его наращения по сложным процентам используется следующая формула:

где Sc — будущая стоимость вклада (денежных средств) при его наращении по сложным процентам; Р — первоначальная сумма вклада; i — используемая процентная ставка, выраженная десятичной дробью; n — количество интервалов, по которым осуществляется каждый процентный платеж, в общем обусловленном периоде времени.

При расчете настоящей стоимости денежных средств в процессе дисконтирования по сложным процентам используется следующая формула:

где Pc — первоначальная сумма вклада;

S — будущая стоимость вклада при его наращении, обусловленная условиями инвестирования;

i — используемая дисконтная ставка, выраженная десятичной дробью;

n — количество интервалов, по которым осуществляется каждый процентный платеж, в общем обусловленном периоде времени.

При оценке стоимости денег во времени по сложным процентам необходимо иметь в виду, что на результат оценки оказывает большое влияние не только используемая ставка процента, но и число интервалов выплат в течение одного и того же общего платежного периода. Иногда оказывается более выгодным инвестировать деньги под меньшую ставку процента, но с большим числом интервалов в течение предусмотренного периода платежа.

Коэффициенты наращения и дисконтирования суммы сложных процентов положены в основу специальных таблиц финансовых вычислений, с помощью которых при заданных размерах ставки процента и количества платежных интервалов можно легко вычислить настоящую или будущую стоимость денежных средств по сложным процентам [2].

Математический инструментарий оценки стоимости денег при аннуитете связан с использованием наиболее сложных алгоритмов и определением метода начисления процента — предварительным (пренумерандо) или последующим (постнумерандо).

При расчете будущей стоимости аннуитета на условиях предварительных платежей (пренумерандо) используется следующая формула:

SApre = R Ч ([ (1+i) n — 1] / i) Ч (1+i),

где SApre — будущая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо);

R — член аннуитета, характеризующий размер отдельного платежа;

i — используемая процентная ставка, выраженная десятичной дробью;

n — количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.

При расчете будущей стоимости аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), применяется следующая формула;

SApost = R Ч [ (1+i) n — 1/i],

где SApost — будущая стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо);

R — член аннуитета, характеризующий размер отдельного платежа;

i — используемая процентная ставка, выраженная десятичной дробью;

n — количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.

В процессе расчета аннуитета возможно использование упрощенных формул, основу которых составляет только член аннуитета (размер отдельного платежа) и соответствующий стандартный множитель (коэффициент) его наращения или дисконтирования.

Использование стандартных коэффициентов наращения и дисконтирования стоимости существенно ускоряет и облегчает процесс оценки стоимости денег во времени.

В финансовом менеджменте постоянно приходится считаться с фактором инфляции, которая с течением времени обесценивает стоимость находящихся в обращении денежных средств.

Стабильность проявления фактора инфляции и его активное воздействие на результаты финансовой деятельности предприятия определяют необходимость постоянного учета влияния этого фактора в процессе финансового менеджмента.

Концепция учета влияния фактора инфляции в управлении различными аспектами финансовой деятельности предприятия заключается в необходимости реального отражения стоимости его активов и денежных потоков, а также в обеспечении возмещения потерь доходов, вызываемых инфляционными процессами, при осуществлении различных финансовых операций.

Для оценки интенсивности инфляционных процессов в стране используются два основных показателя, учитывающих фактор инфляции в финансовых вычислениях — темп и индекс инфляции [2].

Темп инфляции характеризует показатель, отражающий размер обесценения (снижения покупательной способности) денег в определенном периоде, выраженный приростом среднего уровня цен в процентах к их номиналу на начало периода.

Индекс инфляции характеризует показатель, отражающий общий рост уровня цен в рассматриваемом периоде, определяемый путем суммирования базового их уровня на начало периода (принимаемого за единицу) и темпа инфляции в этом же периоде (выраженного десятичной дробью).

При расчетах, связанных с корректировкой стоимости денег с учетом фактора инфляции, принято использовать два понятия — номинальная и реальная сумма денежных средств.

Номинальная сумма денежных средств отражает оценку размеров денежных активов в соответствующих денежных единицах без учета изменения покупательной стоимости денег в рассматриваемом периоде.

Реальная сумма денежных средств отражает оценку размеров денежных активов с учетом изменения уровня покупательной стоимости денег в рассматриваемом периоде, вызванного инфляцией.

Для расчета этих сумм денежных средств в процессе наращения или дисконтирования стоимости денег во времени используются соответственно номинальная и реальная ставка процента.

Номинальная процентная ставка характеризует ставку процента, устанавливаемую без учета изменения покупательной способности денег в связи с инфляцией (или общую процентную ставку, в которой не элиминирована ее инфляционная составляющая).

Реальная процентная ставка характеризует ставку процента, устанавливаемую с учетом изменения покупательной стоимости в рассматриваемом периоде в связи с инфляцией [4].

При прогнозировании годового темпа инфляции используется следующая формула:

ТИГ = (1 +ТИМ) 12 — 1,

где ТИГ — прогнозируемый годовой темп инфляции, выраженный десятичной дробью;

ТИМ — ожидаемый среднемесячный темп инфляции в предстоящем периоде, выраженный десятичной дробью.

По указанной формуле может быть рассчитан не только прогнозируемый годовой темп инфляции, но и значение этого показателя на конец любого месяца предстоящего года.

При прогнозировании годового индекса инфляции используются следующие формулы:

ИИГ = 1 +ТИГ или ИИГ = (1 + ТИМ) 12,

где ИИГ — прогнозируемый годовой индекс инфляции, выраженный десятичной дробью;

ТИГ — прогнозируемый годовой темп инфляции, выраженный десятичной дробью (рассчитанный по ранее приведенной формуле);

ТИМ — ожидаемый среднемесячный темп инфляции, выраженный десятичной дробью.

Математический инструментарий формирования реальной процентной ставки с учетом фактора инфляции основывается на прогнозируемом номинальном ее уровне на финансовом рынке (результаты такого прогноза отражены обычно в ценах фьючерсных и опционных контрактов, заключаемых на фондовой бирже) и результатах прогноза годовых темпов инфляции. В основе расчета реальной процентной ставки с учетом фактора инфляции лежит Модель Фишера, которая имеет следующий вид:

1 + Ip = (1 — Т n ) / (1 + ТИ),

где Ip — реальная процентная ставка (фактическая или прогнозируемая в определенном периоде), выраженная десятичной дробью;

Т n — номинальная процентная ставка (фактическая или прогнозируемая в определенном периоде), выраженная десятичной дробью;

ТИ — темп инфляции (фактический или прогнозируемый в определенном периоде), выраженный десятичной дробью.

Четкое представление о базовых понятиях финансовой математики необходимо для понимания всего последующего материала. Главное из таких понятий — процентные деньги (далее — проценты), определение которых составляет сущность большинства финансовых расчетов.

Проценты — это доход от предоставления капитала в долг в различных формах (ссуды, кредиты и т.

Процентная ставка — это величина, характеризующая интенсивность начисления процентов.

Величина получаемого дохода (т. е. процентов) определяется исходя из величины вкладываемого капитала, срока, на который он предоставляется в долг или инвестируется, размера и вида процентной ставку (ставки доходности).

Наращение (рост) первоначальной суммы долга — это увеличение суммы долга за счет присоединения начисленных процентов (дохода).

Множитель (коэффициент) наращения — это величина, показывающая, во сколько раз вырос первоначальный капитал.

Период начисления — это промежуток времени, за который начисляются проценты (получается доход). В дальнейшем будем полагать, что период начисления совпадает со сроком, на который предоставляются деньги. Период начисления может разбиваться на интервалы начисления.

Интервал начисления — это минимальный период, по прошествии которого происходит начисление процентов.

Существуют две концепции и, соответственно, два способа определения и начисления процентов.


Статьи по теме